
www.manaraa.com

DOCUMENT RESUME

ED 459 815 IR 058 351

AUTHOR Yaron, David; Milton, D. Jeff; Freeland, Rebecca
TITLE Linked Active Content: A Service for Digital Libraries for

Education.
SPONS AGENCY National Science Foundation, Arlington, VA.
PUB DATE 2001-06-00
NOTE 9p.; In: Proceedings of the ACM/IEEE-CS Joint Conference on

Digital Libraries (1st, Roanoke, Virginia, June 24-28,
2001) . For entire proceedings, see IR 058 348. Funded as
part of the National Science Mathematics Engineering and
Technology Education Digital Library (NSDL) program. Figures
may not reproduce well.

AVAILABLE FROM Association for Computing Machinery, 1515 Broadway, New York
NY 10036. Tel: 1-800-342-6626 (U.S. & Canada); Tel:
+1-212-626-0500 (Global); e-mail: acmhelp@acm.org. For full
text:

http://wwwl.acm.org/pubs/contents/proceedings/d1/379437/.
PUB TYPE Reports - Descriptive (141) -- Speeches/Meeting Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Active Learning; *Authoring Aids (Programming); Computer

Assisted Instruction; Computer Software Development;
Cooperation; Curriculum Development; Education; *Electronic
Libraries; Information Services; Learning Activities;
*Programming

. ABSTRACT_
A service is described to help enable digital libraries for

education, such as the NSDL (National Science Mathematics Engineering and
Technology Education Digital Library), to serve as collaboration spaces for
the creation, modification and use of active learning experiences. The goal
is to redefine the line between those activities that fall within the domain
of computer programming and those that fall within the domain of content
authoring. The current location of this line, as defined by Web technologies,
is such that far too much of the design and development process is in the
domain of software creation. This paper explores the definition and use of
"linked active content," which builds on the hypertext paradigm by extending
it to support active content. This concept has community development
advantages, since it provides an authoring paradigm that supports
contributions from a more diverse audience, including especially those who
have substantial classroom and pedagogical expertise but lack programming
expertise. It also promotes the extraction of content from software so that
collections may be better organized and more easily re-purposed to meet the
needs of a diverse audience of educators and students. (Contains 20
references.) (Author/AEF)

Reproductions supplied by EDRS are the best that can be made
from the ori inal document.

www.manaraa.com

Linked Active Content:
A Service for Digital Libraries for Education

David Yaron
Department of Chemistry

Carnegie Mellon University
Pittsburgh, PA 15213

412-268-1351

yaron@chem.cmu.edu

D. Jeff Milton
Department of Chemistry

Carnegie Mellon University
Pittsburgh, PA 15213

412-268-1065

milton@chem.cmu.edu

ABSTRACT
A service is described to help enable digital libraries for
education, such as the NSDL, to serve as collaboration spaces for
the creation, modification and use of active learning experiences.
The goal is to redefine the line between those activities that fall
within the domain of computer programming and those that fall
within the domain of content authoring. The current location of
this line, as defined by web technologies, is such that far too much
of the design and development process is in the domain of
software creation. This paper explores the definition and use of
"linked active content", which builds on the hypertext paradigm
by extending it to support active content. This concept has
community development advantages, since it provides an
authoring paradigm that supports contributions from a more
diverse audience, including especially those who have substantial
classroom and pedagogical expertise but lack programming
expertise. It also promotes the extraction of content from software
so that collections may be better organized and more easily
repurposed to meet the needs of a diverse audience of educators
and students.

Categories and Subject Descriptors
K.3.1. [Computers in Education]: Computer Uses in Education,
computer assisted instruction, computer managed instruction.

General Terms
Human Factors, Experimentation

Keywords
Education, Active learning, Web authoring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
JCDL '01, June 24-28, 2001, Roanoke, Virginia, USA.
Copyright 2001 ACM 1-58113-345-6/01/0006...$5.00.

1

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

D. Cotton

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Rebecca Freeland
Department of Chemistry

Carnegie Mellon University
Pittsburgh, PA 15213

412-268-7981

r151 @andrew.cmu.edu

1. INTRODUCTION
A large body of educational research has shown the benefits of
active learning, whereby students do not sit passively while they
are told information, but rather participate actively in the learning
process [13]. Digital libraries for education, such as the NSDL,
can help catalyze the shift towards more active, exploratory,
inquiry-based learning activities. The digital library's potential
lies not only in the ability to bring active learning experiences to
an unprecedented and large audience of students, but also in the
potential to serve as a collaboration space to catalyze the creation,
modification and assessment of student activities. First, a grass-
roots development approach, which remains in intimate touch
with the needs of teachers and students, may reduce concerns that
can prevent adoption of useful teaching innovations. Second, and
perhaps more difficult to achieve, if the library is to be populated
with a large amount of high-quality material, it will be important
to engage a large community of developers and early-adopters,
with a wide range of interests, expertise and approaches.

The goal of our research is to provide a technical infrastructure
that will help digital libraries, such as the NSDL, overcome some
of the main challenges associated with collaborative creation of
engaging learning activities. From a community building
perspective, creation of these activities requires both technical and
pedagogical expertise, a combination of expertise that few
members of the NSDL community can be expected to possess.
From a collections perspective, the level of interactivity required
for engaging activities typically leads to monolithic chunks of
software that are difficult to subdivide into components that
promote adaptation and reuse. Our premise is that these
challenges are intimately coupled, since they both relate to where
one draws the line between software creation and content
authoring. The current location of this line, as defined by
available web technologies, is such that far too much of the design
and development process is in the domain of software creation.
By pushing this line to allow for more powerful and flexible
content authoring, we can better utilize the expertise of those
members of the community with curriculum development and
classroom experience. Redefining the line between programmer
and author also promotes the extraction of content from software
in a manner that leads to better organized collections that may be
repurposed to meet the needs of a diverse audience of educators
and students.

BEST COPY AVAILABLE
25

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

t This document has been reproduced as
received from the person or organization
originating it.

El Minor changes have been made to
improve reproduction quality.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

www.manaraa.com

2. RELATED WORK
Over the last 40 years, there have been thousands of individual
efforts to create science and engineering teaching and learning
materials in digital formats, ranging from case study depositories
to instructional software. Some have been quite effective, such as
the Physics Academic Software (PAS) library [4]. It is now
widely recognized, however, that developing configurable
learning objects that will be reused is essential to vitalizing online
instruction. The efforts of groups including the Instructional
Management Systems group started by EDUCAUSE [7], the
IEEE Learning Technology Standards Committee [11], the
ARIADNE project [3], the Advanced Distributed Learning
Initiative [5], and others to create standards for learning objects is
partly motivated by the reality that reuse is rare. Most of the
standards currently being developed revolve around textual
content (metadata descriptions for content, standards for questions
and answers, and curriculum structure standards), and not around
software development and reuse.

It has long been hoped that instructional software developers
would contribute to libraries of instructional software that would
give less technically oriented educators access to the benefits of
software simulations and interactive exercises. There are a
number of significant new efforts at creating architectures for
developing and sharing educational software components [2, 6, 8,
9, 10, 12], most of them based on the Java language. The ESCOT
[9] project is a testbed that seeks to encourage development and
re-use of learning objects, with a current emphasis on middle-
school mathematics. The NEEDS [14] project to create a digital
library for engineering education includes educational software on
their site. The National Science Foundation Computer
Courseware Repository [15] promises inclusion of instructional
software but posts little to date

Current tools to invite participation of instructors with little
programming expertise include general authoring environments,
such as Macromedia Director and Authorware or Macromedia's
Web-based Course Builder. While these are powerful and useful
tools, they do not have a smooth integration path for coupling to
repositories of Java objects, and so are not sufficient to meet the
goals addressed here. They also present users with a steep
learning curve. Another approach to the construction of tools for
this audience starts with general component assembly models
such as the Java Beans model and simplifies and/or provides
support to make this approach accessible to a broader audience.
Development of such tools is an active research area, for instance
at the ESCOT project. As discussed further below, our approach
is related to this one but, rather than starting with component
assembly and reducing its complexity, we start with Web content
creation and extend its abilities. This leads to tools that
complement those of other projects, and invite a much broader
authoring audience.

3. LINKED ACTIVE CONTENT
One approach to redefining the line between educational software
creation and content authoring is to view the creation of curricular
materials as primarily programming and simplify this activity so
that it is accessible to more instructors. Our approach starts from a
very different perspective, that of curriculum creation as Web
authoring. We believe that this approach has advantages in
learnability, organizing and reusing content, and supporting
domain-specific software components. Most instructors are

26

already familiar with the hypertext link and image map
functionalities of Web authoring. Grounded in this model, we
extend it to include links to and between simulations and other
active learning objects such as tutorials or animations. This builds
on the familiar paradigm of hypertext linking: it is intuitively
simple to go from creating a hypertext link to sending a message
to a learning object. While simple, this linking ability significantly
increases the ability of a non-programmer to create interesting
active learning experiences.

In addition to the community building advantages discussed
above, linked-active content also has advantages for the structure
of a digital library for education. Consider the current manner in
which active content is supported on the web. Currently, the
limitations of HTML are overcome with plug-in technologies,
such as Flash or Java, that essentially provide embedded browsers
for content stored in a format that has little or no relation to the
overall HTML in which the plug-in is embedded. Without good
communication between the plug-in content and the overall
HTML, even text and image portions of the software, which could
be handled with HTML, must instead be embedded in the plug-in.
This embedding leads to large chunks of content that are difficult
to adapt and reuse. Although this active content often consists of
sub-objects with relationships, similar to a hypertext web site, the
limits of the plug-in technology prevent this substructure from
being made explicit in a manner that can lead to better organized
digital library collections.

To catalyze the creation of good active learning experiences, the
infrastructure should not only support the creation of domain-
specific software components, but actively promote coupling of
new components to existing ones. For many of the activities that
drive the web, such as product advertising and online sales, the
functionality provided by HTML and plug-ins is sufficient.
However, the creation of active learning experiences involves a
mix of cross-domain components, such as those that handle text
and images, along with domain-specific components, such as that
in scientific simulations.

Consider a Virtual Lab for chemical education that provides a
flexible simulation in which students may perform a large variety
of experimental procedures in a manner that mimics that of a real
laboratory [18]. While this flexibility supports a wide variety of
approaches to chemical education, many approaches call for
providing students with guidance so that they interact with the
simulation in a meaningful way [19]. This guidance is typically
text and image based: what to do at a certain stage, explanations
of concepts, questions to be answered, etc. While much of the
functionality needed to provide this guidance is domain
independent, educational software presents a rather unique need
for both general and domain-specific components. A flexible
means to present text and images, such as that in HTML, can be
made much more powerful by allowing the text and images to link
to simulations. In the Virtual lab example, it should be possible to
provide text links and buttons that cause chemical solutions to
appear in the virtual lab, or that check the current state of the lab
to see if the student has achieved a certain goal. This design
promotes reuse of components, since each domain and each
software project do not need to reinvent the general tools, but
need only provide domain-specific software components.

www.manaraa.com

4. PROGRAMMER AND AUTHOR ROLES
Producing a shift in the line between software creation and
content authoring requires not just a change in technical
infrastructure, but also a change in how programmers and
educators view their roles. Although a programmer must create
learning objects, a major goal of our work is to promote a change
in the mind-set of the programmer, away from creating finished
pieces of educational software and towards creation of learning
objects that serve as viewers and manipulators of content.

The issues we are addressing may then be viewed as a specific
instance of the more general objective of creating useful
components for educational software. Our project is a
collaboration with Andries van Dam and Anne Spalter of Brown
University, who are considering the creation of components for
use by programmers. Our emphasis here is on the creation of
components for use by instructors. These instructor components
are to be created by programmers, ideally using the software
components developed by our Brown collaborators.

5. LIBRARY SERVICES
The goal of our research is to explore the requirements and
benefits of allowing links between active content. Active content
is that content contained in scientific simulations, tutorials, and
other materials that, due to their interactive nature, go beyond the
abilities of HTML and so are constructed using JAVA or a web
plug-in technology. We will refer to the software components that
present this content as learning objects. By "linked active
content", we mean information passing between learning objects
through conduits that are created during the authoring process
rather than being hard-coded into the objects themselves. Such
links can pass a message to a learning object, or query an object
for data. (More complex means of transferring information
between objects are discussed in Section 8.4.)

A principal motivation of this approach is to give an intuitive yet
powerful ability to curriculum authors and instructors. It is not a
big leap to go from creating a hypertext link to sending a message
to a learning object, especially if the link creation is done through
dialog boxes as described below. For example, in authoring
curriculum around a combustion engine simulation, the author
could insert the text "click here to start the engine", with the word
"here" being a link that sends the "start" message to the engine.
The extended link is similar to a method call in an object oriented
programming language, and has the logical structure
target:action:data, stored via XML.

The output of a completed authoring process is an XML file
describing the initial arrangement and state of the learning
objects, and the links between these objects that will drive the
simulation and react to the student's interactions with it. A
viewer, implemented in Java, is used to create the learning
environment specified by this file. Note that the XML file is not a
script file, but rather a set of linked objects with an initial
configuration, analogous to a web site containing a set of linked
documents and an initial entry page. This outcome reflects the
shift from a simplified-programming to extended-web-authoring
paradigm. Unlike current component assembly tools, where errors
are typically reported by a compiler in a language that is often
obtuse even to experienced programmers, the only types of errors
that can arise here are broken links, and even these can be avoided
via automated link-generation facilities.

27

The viewer is a browser that supports dynamic loading of Java
objects, and that supports our extending linking structure between
these objects. The responsibilities of the viewer are intentionally
minimized to make the environment maximally extensible. The
functionality resides in the learning objects (implemented as Java
classes), and in the links between these objects, not in the viewer
itself. We provide implementations of core objects, discussed
below, that bring extended linking to web functionalities such as
hypertext and imagemaps. However, these learning objects can be
swapped out for other implementations. The viewer handles only
the extended linking of these objects. Even the placement of
objects on the screen is done using a replaceable learning object,
analogous to the layout managers of Java. Our initial
implementation of the layout manager mimics HTML frames in
order to capitalize on potential instructor familiarity.

The environment consists of:

Core learning objects such as a hypertext viewer and
image-map viewer that build on their web counterparts
by supporting extended linking. These learning objects
consist of cross-domain objects for viewing text,
images, setting up navigation structures, assessment and
grading tools, etc.

An authoring environment, that provides a simple
graphical means for arranging the objects and creating
links, and that helps the curriculum author organize the
potentially large number of text snippets and image
maps that make up a complete tutorial or exercise. The
organizational aspects are handled by a file-explorer
interface that presents the author with a hierarchical list
of the corresponding text and image maps. This
environment gives the author access to the library of
learning objects that can be used to construct
simulations. As objects are added to the library, the
range of simulations that can be created grows.

A viewer, implemented in Java that creates the learning
environment described in the XML file output by the
authoring environment.

We are also developing domain-specific learning objects for
chemical education, such as a virtual chemistry lab and other
simulations. All of the software components use the Java Beans
API to expose the methods that will accept messages via the
linking mechanism.

6. EXAMPLES
A major goal of our research is to explore the authoring flexibility
that may result from allowing linking between active content. Just
as hypertext brings more power to text authoring than may have
been expected given its relative simplicity, linking of active
content leads to considerably more power and flexibility in the
construction of student activities than we anticipated at the start of
this project. We will attempt to illustrate this power through the
following two examples.

6.1 Mission to Mars
In creating a student activity that utilizes a scientific simulation,
the role of the programmer is to develop the simulation while that
of the curriculum author is to guide student interaction with the
simulation. Under current web technologies, a programmer may
provide the simulation as a Java applet, which can then be placed

www.manaraa.com

on a web page along with text and image maps that guide the
student interaction. The text, especially if placed in a frame below
the applet, can take full advantage of the hypertext abilities of
HTML to present the material in an appropriate order and even
provide nonlinear paths through the material. However, this text
remains disconnected from the simulation.

One use of the extended linking mechanism we are developing is
to allow the text to pass messages to the simulation.

ffVissitu'lpiticalX6SMMtryt;r1... MeSiroAral uniteit Stataa..CMIatiorativa Missiari Mars

Figure 1. The Mars Simulation exercise with simulation frame
(top left), control frame (top right) and parameter frame
(bottom).

Figure 1 shows a simulation of a rocket trajectory from Earth to
Mars, built using our authoring system. A programmer created the
trajectory simulation as a Java component with methods that set
the fuel characteristics and other simulation parameters. The
author may then use the core learning objects describe in Section
5 to guide student interaction with the simulation. Here, the
author has created three frames: the simulationjrame, which
contains the trajectory simulator object, and a controljrame and
parameterjrame, each of which contains an image-map viewer.

The image-map viewer is a core learning object that builds on the
paradigm of the standard web image map. A region (ellipse or
polygon) of an image can be made into a "hot spot" that responds
when the pointer passes over it, or is clicked/double-clicked. The
authoring environment allows the author to create some simple
but useful responses to activating a hot spot. For instance, in the
controljrame of Figure 1, the pointer has activated a hot spot
over "Launch" that brings up "bubble help" describing the action
of this menu item. (Various filters are provided to allow the look
of the bubble help to be customized.) Hot spots may also pop up
additional images or a menu of links. In this case, clicking on the
Launch hot spot sends a launch message to the trajectory
simulator via the extended link: trajectorySimulator:launch.

28

The image map also supports editable hot-spots, which serve as
entry boxes for user input. For instance, in the parameterjrame
of Figure 1, the student may enter and edit text. This text is then
passed as data to the method associated with the hot spot. For
instance, the upper most text box sends the message
trajectorySimulatorsetHeat:8.9e5. In this manner, the author is
allowed to create simple control panels to the simulation. The
construction of the control panel is quite different from the
approach of JAVA Bean assembly environments. Here, the author
first creates an image of the control panel using a tool such as
Photoshop. The author then uses our imagemap editor tool to
make the relevant portions of the image hotspots that link to the
simulation.

In our current implementation, the author must type in the link
using appropriate syntax. However, we are currently developing
dialog-driven link generation. In this manner, when the author
chooses a hot spot for a link, the authoring environment presents a
dialog box showing possible targets for the link, such as a list of
frames into which a new learning object might appear in response
to the student clicking on the hot spot. For example, the author
could select simulationjrame as the location where the object
would appear. This would then prompt for the desired learning
object from the library. Once a learning object is selected, the
author is prompted with a list of instructions that can be sent to
the chosen learning object. For example, a petri dish simulation
for growing bacteria could have methods setGrowthRate,
startGrowth, and stopGrowth. Finally, if the chosen method
requires data, such in setGrowthRate, the curriculum author
would be prompted for the relevant data. Thus, the author
stipulates how a simulation will behave in response to student
actions by doing little more than making hyperlink connections.
Note -also that more than one link can be attached to a single
hotspot or link.

6.2 Pathogen
While conceptually simple, the functionality described above is
quite powerful. At the simplest level, providing one frame
containing text next to a frame containing a simulation allows
authoring of a tutorial that guides a student through the
simulation. It is also possible to create the illusion of moving
through a virtual world by placing links on imagemaps that load
other imagemaps, as is common in computer games such as
King's Quest or Myst. Clicking on a door loads an image in which
the door is open, and clicking again loads an image of the next
room. Such images can be easily obtained with a digital camera.
In addition, components may be designed that fit into the
environment and provide the author with considerably more
power, as illustrated by our Pathogen exercise.

The Pathogen exercise addresses topics typically covered in the
first few weeks of an introductory college or high school
chemistry course. These topics are put in the context of drug
discovery, and in Figure 2, students lead a team of researchers on
an island in search of plants with medicinal activity. (They will
later bring these plants back to a pharmaceutical laboratory and
help determine the active ingredients.)

BEST COPY AVAILABLE

www.manaraa.com

C4nU1 pc.;*.nur N414;4 ;r1.1 g.-1)

,sta

4C'

s /44 i`

Figure 2: The Pathogen student exercise.

The upper left panel in Figure 2 contains a profile viewer
component that displays information about the currently active
team member. This component also has an associated authoring
tool that allows an instructor to add his or her own team members.

17.22=2:1

Occasionally, a team member becomes infected and must be given
a appropriate drug to be cured. In determining the type and
amount of drug, the student must solve a problem involving Figure 3. Authoring tool for creating and editing new maps.
chemical concepts. If the drug is not appropriate, the team
member is airlifted off the island and to a local hospital. The
number of initial team members then sets the number of problems
the student.may get wrong before needing to get a new team and
start again.

To support the navigation required by this application, a
programmer created a map navigation component, which is loaded
into the lower frame of Figure 2. The component shows a map of
the island and the current location of team members, and allows
the student to move these members around the island. When a
team member enters a new location on the map, an image of that
location is loaded into the upper-right workspace frame of Figure
2. This is an example of a component passing a message to
another component. In this case, the map component passes a
loadlmage message to the image-map component in the
workspace frame. The programmer also created an authoring tool,
shown in Figure 3, to allow authors to start with any image and
place nodes at various locations to construct a map.

This simple yet powerful navigation component is reused to allow
the student to navigate through the pharmaceutical lab in the
second part of this exercise. We are currently extending this
component to support Quicktime VR images [17]. One can
envision other types of navigation components that utilize, for
instance, 3-D graphics.

Since the image in the workspace frame is displayed through the Figure 4. The Pathogen student exercise displaying the written
image-map viewer discussed above, it supports all of the problem (upper right).
extensions discussed there. For instance, clicking on a hot spot on
the image can load a protein viewer showing the molecular
structure of a protein relevant to the current exercise.

Mellon aivenij P.:m*1h PelhotWO

'

29 BEST COPY AVAILABLE

www.manaraa.com

cEsi&7.7

14 Pathocen

Rartsial- ,IfitoScippo

1Nalg11)¢.41140 4.4
ux#310

ggested dosage ; 17 mg / 5 mg or body
ight.

Me dosage exceeds this amount then the
bent is in danger of took side effects Too

idle and the pathogen is unaffected

Available
Problem Domain attwre.,-

tiftntiO.SJUMIlt-V^"
EcObriuin_Conatart_Cotuirton
stathiomitly_Convetingicalan

-;-]

Text window for
editing the problem

description

Figure 5. The Pathogen instructor authoring tool showing the
creation (or editing) of a specific drug problem.

When a team member becomes infected with a pathogen, a drug-
bottle component appears in the workspace frame, as shown in
Figure 4. The instructions on the drug bottle pose a chemical
problem to be solved by the students. Again, an authoring tool,
shown in Figure 5, is provided to allow instructors to add their
own problems to the application. Note that this problem queries
the profile viewer for information such as the body weight of the
team member, which may be of relevance to the appropriate cure.
This communication between viewers illustrates the use of
extended linking to do simple queries, in addition to the message
passing discussed above.

Note that in adding a powerful component such as those created
for Pathogen, the programmer creates three items: a viewer, a
format for the content displayed and/or manipulated by this
viewer, and a authoring tool to allow non-programmers to create
or modify this content.

Note also that the approach provides multiple entry points for
instructors. For instance, an instructor may first simply use the
drug authoring tool of Figure 5 to add their own chemistry
exercises to Pathogen. Or they may use the profile authoring tool
to replace the team members with students in their class. As they
become more familiar with the approach, they may attempt more
complex modifications and eventually assemble their own
exercises.

7. ADVANTAGES
7.1 Instructor Versus Student Interfaces
The above examples illustrate a fundamental shift in the
development of interactive software for education, whereby the
programmer's primary focus is on designing an "instructor
interface" so that the instructor can design a "student interface."
Consider the current situation, where a simulation of a
combustion engine would typically be constructed as a complete,
stand-alone application. The programmer would need to attach a

30

student interface to the simulation, and in so doing, would make
curriculum decisions that severely limit potential reuse. If the
application were meant to illustrate a college-level concept such
as thermodynamic cycles, the resulting user interface would
exclude use of the application in high schools to illustrate the
ideal gas law. A potential alternative would be to create a
simulation with a very flexible interface, but this could easily lead
to a complex application that confuses students. With the above
assembly environment, the programmer is able to design an
"instructor interface," with the goal of providing sufficient
flexibility that the curriculum author can design useful "student
interfaces." This separation of responsibilities between the
programmer and curriculum developer should lead to much more
effective collaboration and reuse than is currently possible.

7.2 Browsing through Active Content
In creating a student exercise or tutorial, the curriculum author is
essentially creating a means for a student to browse through active
content. This browsing ability is supported by the ability to create
links that load learning objects into frames. For instance, in
creating an exercise about hemoglobin, an author can create two
frames, one of which initially contains text describing the role of
hemoglobin in the body and the other containing a protein viewer
object displaying the 3D molecular structure of hemoglobin. In
response to student clicks on text links or images, the instructor
can load the virtual lab containing solutions in which hemoglobin
has bound up various numbers of oxygen molecules, or an
animation showing how hemoglobin sequentially binds up to 4
oxygen atoms.

The curriculum author is thereby allowed to focus on content,
independent of the particular software viewer (text viewer,
molecular viewer, virtual lab, QuickTime player) needed to
display this content. The content is also well extracted from the
viewer, in a web with relationships and interconnections that
reflect the curriculum content, rather than integrated with the
technology needed to display this content.

8. FUTURE DIRECTIONS
8.1 More Flexible Control Panels
The Mars example of Figure 1 showed the use of an editable hot
spot to serve as a control to a simulation. This control may be
extended to allow sliders, dials etc. to be attached to certain
variables of a simulation. This is an area where graphical
assembly of components is known to work well. For instance,
users with little progamming expertise are able to construct
simple yet powerful front panels in LabView [16] that control real
instruments. Also, attaching text boxes, sliders, etc. to JavaBeans
is one area where even simple Bean assembly tools work well. We
may adopt this paradigm by allowing users to drag controls on top
of an image map to construct a control panel for a simulation.
Attaching these controls to a simulation uses the extended linking
mechanism; for instance, the author could arrange for a slider to
act as a throttle for the engine by first setting the minimum and
maximum value, and then linking it to the engine, choosing the
"engine:setspeed:valye" link to the engine object. Such controls
are easily built into the hyperlink-like scheme for message
passing, since they need to send the message only when altered.
This model mimics the construction capabilities of a commercial
JavaBeans beanbox assembly environment but delivers it in a
non-programming, education-specific service that opens

www.manaraa.com

construction to authors. Simultaneously, it provides a service to
which educational programmers can contribute their industry
standard Java classes as learning objects. Of course, those
programmers will need to take into consideration design
specifications that emerge from the research being done on object
design both by other groups and as a result of our own research.

8.2 Branching
Another issue for continued research is the means by which the
environment responds to student input. In the Pathogen
application discussed above, the student's response to the
chemical problem posed on the drug bottle is checked through a
special-purpose mechanism provided by the programmer. We are
currently working on branching objects that can provide authors
with a simple means to add conditional behavior, or if-then
statements, to the environment. These form the basis for
individualizing responses and feedback to the choices that a
student makes in navigating the learning environment. We view
complex branching behaviors as the domain of the programmer,
and therefore they are meant to be programmed into learning
objects. For instance, a simulation such as our Virtual Lab [20]
provides the student with varied choices and feedback on the
choices they make and actions they take.

One way to give authors branching capabilities is by allowing
branching controls to be inserted into image maps, or control
panels. The author could, for example, use a multiple choice
panel component to allow a student to follow different links
depending on his or her answer. Alternately, an integer response
control and real-number response control would accept a value
from the student, and follow various links depending on the value.

. Allowing the input to such controls to come from simulations (via
extended linking) leads to a flexible simulation environment. For
instance, the author can create text in a text-viewer that asks the
student to adjust the air/fuel ratio of the combustion engine to
achieve a certain power level. They can then add the text "click
here when done", and link the word here to a branching control.
The branching control is of the real-number type, linked to
engine:get_power, and configured to link to
text_frame:load.power correct.htm if the value is in the correct
range and to text_frame:load.power incorrect.htm if the value is
out of the correct range. This model becomes more powerful since
multiple links can be attached to the same hypertext or image-map
region.

8.3 Assessment Components
Student performance assessment is an essential functionality. Our
environment allows assessment/grading components to be easily
integrated into exercises with the simulations. The functionality
will include the ability for students to login to the assignment, and
then the collection of milestone data. The author can create links
to the assessment objects as the simulation is created. For
instance, in the above pathogen exercise, the link to
text_frame:load.power incorrect.htm could be coupled with the
link grading object:milestone:("power question",incorrect), and
similarly for the correct response. (This illustrates the importance
of multiple links from a single point.) The assessment component
would then keep track of the number of attempts before the
correct response was obtained. Grading may be viewed as a
special case of this assessment model, where the grade is based on
achieving certain milestones. We are currently developing
methods to store milestone data in a network database, for which

31

we will provide a simple implementation using an open source
database Rich as MySQL. Extensions could include learning
objects that interface to standard course management systems such
as those offered by Blackboard and WebCT or with assessment
tools developed for distance learning [1].

8.4 Interobject Communication
Another possible extension is to add an additional mode of inter-
object communication to the viewer. For instance, objects may be
allowed to publish or monitor messages on a bus, as in the
InfoBusI standard. While this would allow programmers to
provide authors with more powerful control panel objects than
that described above, it is important to assess the effects of this
added complexity on the author. In particular, will issues of
synchronization lead to new types of errors, beyond the broken
links of the current design, and potentially frustrate the curriculum
author?

9. DIGITAL LIBRARY SERVICES
We stress that our approach is to start from a simple design and
add in only those functionalities that retain a high level of ease-of-
use. This assembly environment is not meant to provide a single
all-purpose solution to component assembly. Rather it is meant to
complement assembly environments currently available that are
based on the simplified-programming model such as ESCOT.
Design of assembly environments involves decisions of flexibility
vs. ease-of-use. The emphasis in this tool is on ease-of-use via an
extended-web-authoring approach that should be intuitive to
instructors, and on the inclusion of features that help organize the
potentially large number of text and images that make up a
learning environment. To the extent that this environment does
not support a more complex mode of component assembly, one of
the tools based on the simplified-programming model may be
used to assemble components into an object for inclusion in this
environment. Thus the two classes of tools actually complement
one another. Our tool fills an important need, since sole reliance
on more complex tools would exclude potentially valuable
contributors.

Our research then consists of the development of two services in
support of digital libraries for education. First is providing an
authoring environment that illustrates the "learning object"
approach to creating on-line learning activities. This set of core
learning objects such as a hypertext viewer and image-map viewer
extend their web counterparts by supporting links to active
content. Second is exploring the extent to which the piecing
together of leaming objects can be moved from the domain of the
programmer into the domain of the curriculum developer. We
anticipate that this shift will lead to both a larger community
creating, adapting and using materials for the digital library and a
better organized collection.

10. ACKNOWLEDGMENTS
This work was funded by the National Science Foundation as part
of the NSDL (National Science Mathematics Engineering and
Technology Education Digital Library) program.

I InfoBus is a standard for data communication between
JavaBeans components.

www.manaraa.com

11. REFERENCES
[1] Project ADEPT -

http://www.users.csbsju.edu/tcreed/adept/index.html

[2] AGENTSHEETS - http://www.agentsheets.com

[3] ARIADNE - Collaborative browsing project on digital
libraries.
http://www.comp.lancs.ac.uk/computing/research/cseg/pro
jects/ariadne/

[4] American Physics Society - Physics Academic Software.
http://webassign.net/pasnew/

[5] Advanced Distributed Learning Intiative network., DOD
http://www.adlnet.org/

[6] BELVEDERE http://www.ics.hawaii.edu

[7] EDUCAUSE - http://www.educause.edu/

[8] EOE http://www.eoe.org

[9] ESCOT - http://www.sri.com/policy/ctl/htmlIescot.html

[10] ESLATE - http://e-slate.cti.gr/

[11] IEEE Learning Technology Standards Committee (LTSC)
http://www.mantaieee.org/groups/ltsc/

[12] JAVASKETCH -
http://www.keypress.com/sketchpad/java_gsp

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Meyers, B.J. & Jones, T.B. Promoting Active Learning:
Strategies for the College Classroom. Jossey-Bass, San
Francisco, 1993.

NEEDS - http://www.needs.org

NSFCCR -
http://www.education.siggraph.org/nsfcscr/nsfcscr.home.ht
ml

National Instruments Corp., LabVIEW
http://www.ni.com, 11500 N Mopac Expwy, Austin TX,
78759.

Quicktime VR Apple Computer Inc.,
http://www.apple.comlquicktime

Smith, J. M. What Steve Jobs Did Right, The Educational
Potential of the Ideas Behind NeXTSTEP. Educom
Review, 1994.

Squires, D. Educational Software for Constructivist
Learning Environments: Subversive Use and Volatile
Design. Educational Technology, May-June 1999,

48-54.

Virtual Laboratory, The IrYdium Project, Carnegie Mellon
University, Chemistry Dept.

32

www.manaraa.com

U.S. Department of Education
Office of Educatonal Research and Improvement (OERI)

National Library of Education (NLE)
Educational Resources Information Center (ERIC)

REPRODUCTION RELEASE
(Specific Document)

NOTICE

REPRODUCTION BASIS

Mahood &sources Mutts Cester

This document is covered by a signed "Reproduction Release
(Blanket) form (on file within the ERIC system), encompassing all
or classes of documents from its source organization and, therefore,
does not require a "Specific Document" Release form.

This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may
be reproduced by ERIC without a signed Reproduction Release form
(either "Specific Document" or."Blanket").

EFF-089 (9/97)

